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Merton’s Model, Credit Risk, and Volatility Skews 

 

 

Abstract 

 
In 1974 Robert Merton proposed a model for assessing the credit risk of a company by 

characterizing the company’s equity as a call option on its assets. In this paper we 

propose a way the model’s parameters can be estimated from the implied volatilities of 

options on the company’s equity. We use data from the credit default swap market to 

compare our implementation of Merton’s model with the traditional implementation 

approach. 
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Merton’s Model, Credit Risk, and Volatility Skews 

 
The assessment of credit risk has always been important to banks and other financial 

institutions. Recently banks have devoted even more resources than usual to this task. 

This is because, under the proposals in Basel II, regulatory credit-risk capital may be 

determined using a bank’s internal assessments of the probabilities that its counterparties 

will default. 

One popular approach to assessing credit risk involves Merton’s (1974) model. This 

model assumes that a company has a certain amount of zero-coupon debt that will 

become due at a future time T. The company defaults if the value of its assets is less than 

the promised debt repayment at time T. The equity of the company is a European call 

option on the assets of the company with maturity T and a strike price equal to the face 

value of the debt. The model can be used to estimate either the risk-neutral probability 

that the company will default or the credit spread on the debt.1  

As inputs, Merton's model requires the current value of the company's assets, the 

volatility of the company’s assets, the outstanding debt, and the debt maturity. One 

popular way of implementing Merton’s model estimates the current value of the 

company’s assets and the volatility of the assets from the market value of the company’s 

equity and the equity’s instantaneous volatility using an approach suggested by Jones et 

al (1984). A debt maturity date is chosen and debt payments are mapped into a single 

payment on the debt maturity date in some way. 

In this paper we develop of new way of implementing Merton’s model. This is based on 

using the implied volatilities of options issued by the company to estimate model 

parameters. Our approach is interesting both because it provides an alternative to Jones et 

                                                 
1 A number of authors such as Black and Cox (1976), Geske (1977), Longstaff and Schwartz (1995), 
Leland and Toft (1996), and Collin-Dufresne and Goldstein (2001) have developed interesting extensions 
of Merton's model, but none has emerged as clearly superior. See Eom et al (2002) which compares the 
performance of alternative models using bond spreads. Gemmill (2002) shows that Merton’s model works 
well in the particular case where zero-coupon bonds are used for funding. 
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al and because it provides insights into the linkages between credit markets and options 

markets.  

Under Merton’s model an option on a company is a compound option on the assets of the 

company. Geske (1979), who provides a valuation formula for compound options, also 

shows that Merton’s model is consistent with the type of volatility skew observed in 

equity markets.2  In this paper we carry Geske’s analysis one stage further to show that 

the credit spread in Merton’s model can be calculated from the implied volatilities of two 

equity options. The options we choose are two-month at-the-money and out-of-the money 

put options.  

To test our implementation of Merton’s model and compare it with the more traditional 

implementation approach we use credit default swap (CDS) spread data. A CDS is a 

derivative that protects the buyer against default by a particular company. The CDS 

spread is the amount paid for protection and is a direct market-based measure of the 

company’s credit risk. Most previous researchers have used bond data to test 

implementations of Merton’s model. Using CDS spreads is an attractive alternative. Bond 

prices have the disadvantage that they are often indications rather than firm quotes. Also, 

the credit spread calculated from a bond price depends on the bond’s liquidity and 

involves an assumption about the benchmark risk-free rate.  

The rest of this paper is organized as follows. Section I develops the theory underlying 

our implementation of Merton’s model. Section II describes the data we use. In Section 

III we compare the credit spreads implied by Merton’s model with CDS spreads for both 

our implementation of Merton’s model and the traditional implementation. In Section IV 

we present some results on the theoretical relationships between implied volatilities and 

credit spreads under Merton’s model and test whether these relationships hold. In Section 

V we develop a relatively simple model, based on Merton’s (1976) jump diffusion model, 

for relating credit spreads to implied volatilities and use it as a benchmark to test whether 

the more elaborate structure underlying our implementation of Merton (1974) provides a 

better explanation of observed credit spreads. Conclusions are in Section VI.  

                                                 
2 As the strike price of an equity option increases its volatility decreases. See Rubinstein (1994) and 
Jackwerth and Rubinstein (1996) for a discussion of this. 
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I.    Merton's Model 
Both Merton (1974) and Black and Scholes (1973) propose a simple model of the firm 

that provides a way of relating credit risk to the capital structure of the firm. In this model 

the value of the firm’s assets is assumed to obey a lognormal diffusion process with a 

constant volatility. The firm has issued two classes of securities: equity and debt. The 

equity receives no dividends. The debt is a pure discount bond where a payment of D is 

promised at time T.  

If at time T the firm’s asset value exceeds the promised payment, D, the lenders are paid 

the promised amount and the shareholders receive the residual asset value. If the asset 

value is less than the promised payment the firm defaults, the lenders receive a payment 

equal to the asset value, and the shareholders get nothing.  

A.  Equity Value and the Probability of Default 

Define E as the value of the firm’s equity and A as the value of its assets. Let E0 and A0 

be the values of E and A today and let ET and AT be their values at time T. In the Merton 

framework the payment to the shareholders at time T, is given by 

ET = max[AT – D, 0] 

This shows that the equity is a call option on the assets of the firm with strike price equal 

to the promised debt payment. The current equity price is therefore 

 ( ) ( )0 0 1 2
rTE A N d De N d−= −   

where  

 
( )0

1 2 1

ln
0.5 ;

rT

A A
A

A e D
d T d d T

T
= + σ = − σ

σ
 

σA is the volatility of the asset value, and r is the risk-free rate of interest, both of which 

are assumed to be constant. Define * rTD De−=  as the present value of the promised debt 

payment and let *
0/L D A=  be a measure of leverage. Using these definitions the equity 

value is 
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 ( ) ( )0 0 1 2E A N d LN d = −   (1) 

where  

 ( )
1 2 1

ln
0.5 ;A A

A

L
d T d d T

T
−

= + σ = − σ
σ

 

As shown by Jones et al (1984), because the equity value is a function of the asset value 

we can use Ito’s lemma to determine the instantaneous volatility of the equity from the 

asset volatility:3 

0 0E A
EE A
A

∂
σ = σ

∂
 

where σE is the instantaneous volatility of the company’s equity at time zero. From 

equation (1), this leads to 

 ( )
( ) ( )

1

1 2

A
E

N d
N d LN d

σ
σ =

−
 (2) 

Equations (1) and (2) allow A0 and σA to be obtained from E0, σE, L and T. 4  The risk-

neutral probability, P, that the company will default by time T is the probability that 

shareholders will not exercise their call option to buy the assets of the company for D at 

time T. It is given by 

 ( )2P N d= −  (3) 

This depends only on the leverage, L, the asset volatility, σ, and the time to repayment, T.  

                                                 
3 Jones et al (1984) actually use equations (1) and (2) in conjunction with some estimates of A and σ. 
4The implementation of Merton’s model, based on equations (1) and (2), has received considerable 
commercial attention in recent years. Moody's KMV uses it to estimate relative probabilities of default. 
CreditGrades (a venture supported by Deutsche Bank, Goldman Sachs, JP Morgan, and the RiskMetrics 
Group) uses it to estimate credit default swap spreads. 
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B.   Debt Value and the Implied Credit Spread of Risky Debt 

Merton’s model can be used to explain risky debt yields. Define B0 as the market price of 

the debt at time zero. The value of the assets at any time equals the total value of the two 

sources of financing so that 

 000 EAB −=  

Using equation (1) this becomes 

 ( ) ( )0 0 1 2B A N d LN d= − +    (4) 

The yield to maturity on the debt is defined implicitly by 

 ( )*
0

r y TyTB De D e −−= =  

Substituting this into equation (4) and using A0 = D*/L gives the yield to maturity as 

 ( ) ( )2 1lny r N d N d L T = − + −   

The credit spread implied by the Merton model is therefore5 

 ( ) ( )2 1lns y r N d N d L T = − = − + −   (5) 

Like the expression for the risk-neutral probability of default in equation (3), the implied 

credit spread depends only on the leverage, L, the asset volatility, σA, and the time to 

repayment, T. 

C.    Equity Volatility and Volatility Skews 

One point about Merton’s model that has not received much exploration is the role it 

plays in explaining equity implied volatilities and the volatility skews that are observed in 

the equity options market. Within the framework of the Merton model, an option on the 

firm’s equity that expires before the debt matures is a compound option, an option on a 

European call option. We can therefore use the model proposed by Geske (1979) to 

                                                 
5 The relationship between credit spreads and default risk is discussed by Duffie and Singleton (1999), 
Litterman and Iben (1991), and Rodriguez (1988) among others. 
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evaluate it. Using the notation developed above, the value at time zero of a put with strike 

price K and expiry time τ < T on the equity is  

 ( ) ( ) ( )2 2 0 1 1 2, ; / , ; /rT rP De M a d T A M a d T Ke N a− − τ= − − τ − − − τ + −  (6) 

where 

 
( )*

0
1 2 1

ln /
0.5 ; 0.5

r

A A
A

A A e
a a a

− τ
τ= + σ τ = − σ τ

σ τ
 

M is the cumulative bivariate normal distribution function, and *Aτ  is the critical asset 

value at time τ, the value for which the equity value at that time equals K. That is *Aτ  is 

the asset value below which the put on the equity will be exercised.  

Define v as the implied volatility of the put at time zero based on the Black-Scholes 

model. Also define parameters α and κ by 

*Aτ  = α A0 erτ 

K = κ E0 erτ 

The parameter α is the ratio of the critical asset price to the forward asset price (with both 

being observed at time zero). We will refer to it as the implied strike level. The parameter 

κ is the ratio of the option strike price to the forward equity price (observed at time zero). 

We will refer to it as the option’s moneyness. 

Implied volatilities are the volatilities which, when substituted into the Black-Scholes 

model, give the market price. If we assume that market prices are given by Merton’s 

model, the implied volatility of an option can be determined by solving: 

 
( ) ( ) ( )

( ) ( )

*
2 2 0 1 1 0 2

* *
0 2 0 1

, ; / , ; /D M a d T A M a d T E N a

E N d E N d

− − τ − − − τ + κ −

= κ − − −
 (7) 

where 
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( )

( )

* * *
1 2 1

1 2 1

ln
0.5 ;

ln
0.5 ;A A

A

d v d d v
v

a a a

− κ
= + τ = − τ

τ
− α

= + σ τ = − σ τ
σ τ

  

Substituting equation (1) into equation (7) results in 

 
( ) ( ) [ ]

( ) ( ) [ ]
2 2 1 1 2 1 2

* *
2 1 1 2

, ; / , ; / ( ) ( ) ( )

( ) ( )

LM a d T M a d T N a N d LN d

N d N d N d LN d

− − τ − − − τ + κ − −

 = κ − − − 

 (8) 

A variation of equation (1) can be used to determine the implied strike level, α: 

 ( ) ( ) ( )*
0 1, 2,/rE e A N d L N dτ

τ τ τ κ = − α   

so that 

 
( ) ( )
( ) ( )

1, 2,

1 2

N d LN d
N d LN d

τ τα −
κ =

−
 (9) 

where 

( )
1, 2, 1,

ln /
0.5 ;A A

A

L
d T d d T

Tτ τ τ

− α
= + σ − τ = − σ − τ

σ − τ
  

Equations (8) and (9) define an implicit relationship between the implied volatility of an 

option and the moneyness, κ, for a set of model parameter values L, σA, and T, and the 

option maturity, τ. For different values of κ different implied volatilities, v, will result 

leading to a volatility skew. For all values of the model parameters, the implied 

volatilities are of the form observed in practice where an increase in the strike price leads 

to a reduction in the implied volatility. 

D.   An Alternative Implementation of Merton’s Model 

Section I.C suggests a new way of implementing Merton’s model using two implied 

volatilities. With one implied volatility we can solve equations (8) and (9) for a particular 

value of T to obtain a relationship between the leverage ratio, L, and the asset volatility, 

σA. With two implied volatilities we have two such relationships that can be solved for L 
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and σA. The credit spread for a zero-coupon bond maturing at time T can then be 

calculated using equation (5).  

This implementation approach allows credit spreads to be estimated directly from implied 

volatility data. It is a potentially attractive alternative to the traditional implementation 

based on equations (1) and (2) because it avoids the need to estimate the instantaneous 

equity volatility and the need to map the company’s liability structure (some of which 

may be off balance sheet) into a single zero-coupon bond.   

In the sections that follow we will compare the results from our implementation of 

Merton’s model with the traditional implementation. As a benchmark we will also 

examine the performance of a simpler model where a Poisson process generates defaults.  

II.    Data  

Our empirical tests are based on credit default swap data, implied volatility data, equity 

price data, and balance sheet data for companies between January and December 2002. 

A.    Credit Default Swap Data 

A credit default swap or CDS provides insurance against a default by a particular 

company or sovereign entity. The company is known as the reference entity and a default 

by the company is known as a credit event. The buyer of the insurance makes periodic 

payments to the seller and in return obtains the right to sell a bond issued by the reference 

entity for its face value if a credit event occurs. The amount of the payments made per 

year by the buyer is known as the CDS spread.6,7 The credit default swap market has 

                                                 
6 In a standard contract, payments by the buyer are made quarterly or semiannually in arrears. If the 
reference entity defaults, there is a final accrual payment and payments then stop. Contracts are sometimes 
settled in cash rather than by the delivery of bonds. In this case there is a calculation agent who has the 
responsibility of determining the market price, x, of a bond issued by the reference entity a specified 
number of days after the credit event. The payment by the seller is then is 100-x per $100 of principal. 
7 The CDS spread is very close to the credit spread observed in the corporate bond market when the credit 
spread is measured relative to the swap rate. For more information on the relation between CDS spreads 
and bond credit spreads see Blanco et al (2003), Longstaff et al (2003) or Hull et al (2003). 
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grown rapidly since the International Swaps and Derivatives Association produced its 

first version of a standardized contract in 1998.8  

GFI, a broker specializing in the trading of credit derivatives provided us with CDS 

quotes for the period January to December 2002. The data contains in excess of 120,000 

individual CDS quotes. Each quote contains the following information:  

o The date on which the quote was made,  

o The name of the reference entity, 

o The life of the CDS,  

o Whether the quote is a Bid (wanting to buy protection) or an Offer 

(wanting to sell protection), and 

o The CDS spread quote in basis points. 

Each quote is a firm quote for a minimum notional of 10 million USD. The reference 

entity may be a corporation such as Blockbuster Inc., a sovereign such as Japan, or a 

quasi-sovereign such as the Federal Home Loan Mortgage Corporation. During the 

period we are considering CDS quotes are provided on 1,597 named entities: 1,500 

corporations, 60 sovereigns and 37 quasi-sovereigns. Of the reference entities 796 are 

North American, 451 are European, and 330 are Asian and Australian. The remaining 

reference entities are African or South American. 

We used only five-year quotes in our analysis. (Approximately 85% of the quotes in our 

data set were for five year CDS.) When there were both five-year bid and offer quotes on 

a reference entity in a day, we calculated what we will refer to as an "observation" on the 

five-year CDS spread as the average of the maximum bid and minimum offer.9 As shown 

by Duffie (1999) and Hull and White (2000), the five-year credit default swap spread is 

in theory very close to the credit spread of the yield on a five-year par yield bond issued 

by the reference entity over five-year par yield risk-free rate. 

                                                 
8 A more complete description of credit default swaps and the CDS market can be found in, for example, 
Duffie (1999). 
9 When there was a trade the bid equals the offer. 



 12

B.    Implied Volatility Data 

From the list of entities covered by the CDS data, we chose optionable US equities with 

current stock prices over $20. This resulted in a list of 325 companies. The Bloomberg 

system, which has been archiving the implied volatility of options on US equities since 

the beginning of 2002, was polled to determine which of the names had implied volatility 

data available. This reduced the sample size to 319 firms. For this sample, the implied 

volatility for the two-month 50-delta put and the 25-delta put were downloaded for every 

trading day in the year 2002. This produced 61,544 observations.  

In the Bloomberg system a two-month option is defined as an option with a maturity 

between one and two months. In most circumstances the exact maturity date of the option 

can be calculated from knowledge of the maturity dates of options traded on the Chicago 

Board Option Exchange. The two-month 25-delta put implied volatility is an estimate of 

the implied volatility of a two-month put option that has a delta of –0.25. This is 

calculated by interpolating between the implied volatility of the two two-month options 

whose deltas are closest to −0.25, one greater that –0.25 and the other less than –0.25. 

The implied volatility for a two-month 50-delta put is calculated similarly. We chose the 

50-delta and 25-delta implied volatilities because they are usually calculated from 

relatively liquid options.  

C.     Data for Traditional Implementation 

For the traditional approach to implementing Merton’s model we downloaded daily 

closing stock prices and quarterly balance sheet information from Bloomberg for the 

period between January 1, 2001 and December 31, 2002. We used the reported quarterly 

total liabilities divided by the quarterly reported outstanding number of shares as our 

measure of the debt claim, D. On any particular day the current value of the debt claim 

was set to the most recently reported value. The equity price and the instantaneous equity 

volatility used in equations (1) and (2) were the daily closing price and a historic 

volatility estimated using the most recent 40 returns. The choice of 40 business days to 

estimate volatility is a trade-off. Using a longer (shorter) period to estimate volatility 
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results in a more (less) accurate but less (more) timely estimates. The total number of 

observations was 63,627. 

D.    Merged Data 

We merged the volatility data and the data used in the traditional implementation with the 

CDS data. This combined data set was then filtered to eliminate cases in which the 

volatility exceeded 90% (65 cases) and firms for which there were 10 or fewer implied 

volatility observations or CDS quotes. This resulted in a pool of 127 firms, each with 

between 11 and 178 days of data for a total of 6,220 firm days of data. In other words we 

ended up with 6,220 cases where for a particular company on a particular day we had a) a 

CDS spread observation, b) a two-month 50-delta put implied volatility, c) a two-month 

25-delta put implied volatility, d) an equity value, e) a debt claim, and f) an historic 

equity volatility estimate. This is the data that was used for the analysis described in the 

following sections. 

III.     Empirical Tests  

In this section we test whether five-year credit spreads implied from our implementation 

of Merton’s model and the traditional implementation are consistent with the observed 

five-year CDS spreads. For the traditional implementation we estimated the equity value, 

historical equity volatility and the outstanding debt in the way described in Section II.C. 

Equations (1) and (2) were used to compute the asset value and asset volatility and 

equation (5) was then used to compute the credit spread. For our implementation we used 

the 50- and 25-delta implied put volatilities in equations (8) and (9) to imply the leverage 

ratio and the asset volatility.10 As in the case of the traditional implementation, equation 

(5) is then used to compute the credit spread. In the balance of the discussion, we shall 

refer to our implementation of Merton’s as the ImpVol implementation and the traditional 

implementation as the Trad implementation. 

There are a number of reasons why we should expect differences between the credit 

spreads implied from Merton’s model and observed CDS spreads. Merton’s model is not 
                                                 
10 This involves determining the value of κ that produces options with deltas of 0.50 and 0.25. 
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a perfect representation of reality because companies do not usually issue only zero 

coupon debt and because a number of factors besides the value of their assets are liable to 

influence a company’s decision to default on its obligations. Also, CDS spreads are liable 

to be slightly different from bond yield spreads for the reasons listed in Hull et al (2002). 

Finally, the credit spread backed out from Merton’s model is the spread between the 

yields on zero coupon bonds while a CDS credit spread is (at least approximately) the 

spread between the yields on par yield bonds.  

Table I shows the results of regressing CDS spreads against the spreads implied from 

Merton’s model using the two implementation approaches. Given the nature of the model 

generating the implied spreads it is unlikely that errors in the implied spreads are 

normally distributed. As a statistical test the regression is therefore of doubtful validity.  

However it does provide a first attempt at describing the relationship (if any) between the 

implied and observed spreads.  

The results in Table I reveal a positive relationship between the observed CDS spreads 

and the implied spreads that is roughly similar for both implementations. The mean CDS 

observed spread about 95 basis points higher than the mean implied spread for both 

models. The R2 of the regressions indicate that the ImpVol implementation provides a 

better fit to the observed data than the Trad implementation. 

It is possible that there are factors other than those suggested by Merton’s model that 

affect CDS spreads. Figure 1 shows a scatter diagram of the CDS spread versus the 

implied spread from the ImpVol model for Merrill Lynch, Dow Chemicals, and Bowater. 

Figure 2 shows the same for the Trad model. These figures suggest that the relation 

between the CDS spread and implied spread may be different for different firms. It is also 

possible that macroeconomic variables cause the relationship between the CDS spread 

and implied spread to change through time. To explore these possibilities we carried out a 

separate regression for each firm and a separate regressions for each day.  

The results are shown in Table II. For both the firm-by-firm regressions and the day-by-

day regressions we report mean and median values for the constant, slope, R2, and 

number of observations. Any firm for which there were less than 30 observations was not 

included in the firm-by-firm regressions. Any day for which there were less than 30 
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observations was not included in the day-by-by regression. This resulted in 86 firm-by-

firm regressions and 90 day-by-day regressions. Table II shows that on average the 

implied spreads fit the CDS observed spreads much better when considered on a firm-by-

firm or day-by-day basis than when fitting the entire sample. This is not surprising since 

the number of degrees of freedom is much larger in the firm-by-firm or day-by-day 

analysis. On the basis of the regression R2, the results also show that the implied spreads 

match CDS spreads better on a firm-by-firm basis than when looking across firms on a 

particular day. What this means is that the models seem to work better at explaining how 

the observed credit spreads for a firm change over time than they do at discriminating 

between different firms at a single time. The two implementations are comparable when 

applied on a firm-by-firm basis but the ImpVol implementation appears to provide a 

better fit than the Trad implementation when applied cross-sectionally. 

A.    Rank Correlations 

The results so far presented indicate that both implementations of Merton’s model are 

consistent with the data in the sense that there is a positive relationship between the 

model predictions and the observed data. There is also some evidence that the relation 

between the implied credit spread and observed credit spread is non-linear.  

To address the apparent non-linearity we could test alternative non-linear models. 

However, the nature of the non-linearity is not known and may differ from firm to firm. 

A general approach to fitting data subject to an unknown non-linear relationship is to 

linearize the data by translating observations to ranks. Formally if  

 ( )y f x=  

for some monotonic increasing function, f, and we have a set of observations {(x1, y1), 

(x2, y2), …, (xn, yn)} then 

 { }( ) { }( )1 2 1 2| , , , | , , ,i n i nr y y y y r x x x x=K K  

where r(a|{b}) is the rank of a within the set b. This linearization works perfectly in the 

deterministic case described here, but difficulties arise when variables are observed with 

error. However, there is a well developed literature on rank correlation which will allow a 
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more formal and robust distribution-free test of which version of the model is more 

consistent with the data.11  

There are two measures of rank order correlation in the literature: Kendall’s and 

Spearman’s. To explain how they are calculated suppose that we have n observations on 

two variables. (In our application the variables are five-year implied credit spread and 

five-year observed CDS spread). As a first step we calculate the rank of each observation 

on each variable.  

For the Kendall rank order correlation measure, rk, we look at the n(n–1)/2 alternative 

pairs of observations. If the rankings of variables for a particular pair of observations are 

in the same order we score +1 and if they are in inverse order we score –1. For example, 

if for a particular pair of observations, the rankings of the first variable were 5 and 10, 

respectively, and the rankings of the second variable were 6 and 8, respectively, we 

would score +1. If the rankings of the first variable were 5 and 10, respectively, and the 

rankings of the second variable were 8 and 6, respectively, we would score –1. The rank 

order correlation is the sum of the scores for all pairs divided by n(n–1)/2. 

For the Spearman’s rank order correlation, rs, we calculate for each observation i the 

difference, di, between the rank order of the first variable and the rank order of the second 

variable. The correlation measure is 

 
2

1
3

6
1

n
ii

s

d
r

n n
== −
−

∑  

Kendall and Gibbons (1990) provides a great deal of information on the properties of the 

two correlation measures. The properties we will use and the statistical tests they give 

rise to are outlined in Appendix A. 

The formal statistical tests based on the rank order correlation between implied spreads 

and observed CDS spreads are reported in Table III. The first panel in Table III shows 

results from pooling all the data. The middle panel carries out a firm-by-firm analysis. 

Rank order correlations were calculated for every company that had 30 or more 
                                                 
11 In the context of our tests it is interesting to note that proponents of the commercial use of Merton’s 
model claim that, although estimated credit spreads are not accurate, the model does at least rank the credit 
quality of companies well. See, for example, Crosbie (1998). 
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observations as in Table II. The final panel in Table III tests whether Merton’s model can 

be used to rank the relative credit quality of different firms at a point in time. Rank 

correlations were computed for every day on which data was available for 30 or more 

firms as in Table II. 

The broad conclusions from the results in Table III are similar to those from the results in 

Tables I and II. The z-statistics show that we can reject the null hypothesis that the rank 

order correlations are zero with a very high degree of confidence in all cases for both 

implementations of Merton’s model. The rank order correlations within firms across time 

are always higher than those measured within a day across firms.12 This indicates that 

both implementations do better at tracking a single firm over time than they do at 

distinguishing between firms at a point in time. 

The correlations from the ImpVol implementation of Merton’s model are always higher 

than for the Trad implementation. In the case of the firm-by-firm analysis they are 

significantly higher at the 1% level. This is in contrast to the results in Table II where the 

R2 for Trad is slightly higher than the R2 for ImpVol in the firm-by-firm case. A close 

inspection revealed the R2 for the firm-by-case case in Table II was greatly influenced by 

a few outliers.  Outliers have far less effect on  rank order correlations. 

There are a number of possible reasons why the ImpVol implementation ranks credit 

spreads better than the Trad implementation. There is the noise in estimates of the 

historic volatility for the Trad implementation and the Trad implementation requires the 

assumption that the historic volatility is the same as the instantaneous volatility. Also we 

had only limited information on the company's capital structure for the Trad 

implementation. 

B.    Impact of Debt Maturity 

As the debt maturity date in the ImpVol implementation of Merton’s model changes the 

implied credit spread changes, but there is little effect on the ranking of implied credit 

spreads. This is illustrated in Table IV, which shows the rank order correlation between 

                                                 
12 Although the calculations are not shown, in every case the within firm rank order correlation is 
significantly larger than the corresponding within day rank order correlation at the 1% level. 
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the implied credit spreads when T equals 1, 2, 5, and 10. We obtained similar results for 

the probability of default rankings and for the day-by-day and company-by-company 

analysis. For financial institutions that are interested only in ranking the creditworthiness 

of counterparties this result may add to the attraction of the ImpVol implementation of 

Merton’s model.  

IV.    Properties of Merton’s Model 

In this section we show that Merton’s model makes certain predictions about the nature 

of the relationship between implied volatilities and credit spreads and test whether the 

predictions are supported by the data. We define ATMVOL for maturity τ as the at-the-

money implied volatility for an option with a delta of 0.50. We define SKEW for 

maturity τ as the implied volatility for an option with maturity τ and a delta of 0.25 minus 

the implied volatility for an option with maturity τ and a delta of 0.50.  

Our implementation of Merton’s model can be used to relate T-year credit spreads to 

ATMVOL and SKEW for particular values of τ and T. Figure 3 shows the theoretical 

relationship between credit spread and ATMVOL for different values of SKEW when  

T = 5 and τ = 0.1667. The figure shows that there is a pronounced positive relationship 

with positive convexity. Similar results are obtained for other values of T and τ. Figure 4 

shows the relationship between credit spread and SKEW for different values of 

ATMVOL when T = 5 and τ = 0.1667. There is very little relationship for low values of 

ATMVOL (volatility less than 50%) but a strongly positive relationship for higher levels 

of ATMVOL. 

To test whether these properties of the model are supported by the data we performed a 

linear regression of observed CDS spread (CREDSPR) against ATMVOL and SKEW for 

our data: 

 SKEWATMVOLCREDSPR ×+×+= cba   

ATMVOL and SKEW are quite highly correlated.  To address this co-linearity issue the 

regressions were done twice, once orthogonalizing SKEW with respect to ATMVOL and 

once orthogonalizing ATMVOL with respect to SKEW. To explore both the convexity of 
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the relation between CREDSPR and ATM and the increasing slope of the relation 

between CREDSPR and SKEW for higher ATM volatilities, we partitioned the sample 

into subsets based on the ATM volatility13. The results are shown in Table V. 

A.    Relation between Credit Spread and ATM Volatility 

When SKEW is orthogonalized with respect to ATMVOL, Table V shows that as 

predicted there is a significantly positive slope for the ATMVOL for the full sample. 

When the sample is split into two roughly equal subsets based on ATMVOL we find that 

the coefficient of the ATMVOL is consistently significantly positive. Further the 

coefficient of the ATMVOL is higher in the high volatility subset than it is in the low 

volatility subset. This is consistent with the convex relationship predict by the model. The 

increase in slope is statistically significant. 

When ATMVOL is orthogonalized with respect to SKEW some of the impact of the 

positive relation between CREDSPR and ATMVOL is liable to be captured by the 

SKEW coefficient. However, it is reassuring that the coefficient ATMVOL is still always 

significantly positive at the 1% level. Furthermore it is significantly higher for the high 

volatility subset than for the low volatility subset.  Table V therefore provides strong 

evidence for a convex positive relation between CREDSPR and ATMVOL. 

B.    Relation between Credit Spread and Skew 

When ATMVOL is orthogonalized with respect to SKEW the relation between 

CREDSPR and SKEW is always significantly positive at the 1% level. When the sample 

is split into two groups, the coefficient of SKEW is significantly higher in the high 

volatility group than in the low volatility group and the difference is significant.  

When SKEW is orthogonalized with respect to ATMVOL, the coefficient of SKEW is 

not significant overall. It is not significant for the lower volatility subset and is significant 

at the 5% level for the high volatility subset. This is consistent with the model, although 

less strongly so than the results in Section IV.A.  

                                                 
13 The partitioning was based on the average ATM volatility for each firm. As a result each firm appears in 
only one subset. 
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A general observation is that the volatility skews observed in practice are much higher 

than those than could reasonably be predicted by Merton's model. The reason may be 

what Rubinstein (1994) has referred to as crash-o-phobia.  

VI.     Does the Merton Model Add Explanatory Power? 

As shown by equations (8) and (9) Merton’s model provides a fairly complex relationship 

between implied volatilities and credit spreads. In this section we develop as a benchmark 

a much simpler model, with far less structure, for relating credit spreads to implied 

volatilities. We test whether Merton’s (1974) model outperforms this benchmark. 

In Merton’s (1976) jump diffusion model, the stock price obeys the process: 

( ) E
dS k dt dz dq
S

= µ − λ + σ +  

where dq is a Poisson process with intensity λ and jump size k. The probability that a 

jump occurs in some small time interval, dt, is λ dt. In the event of a jump the change in 

the stock price is dS kS= . The expected return on the stock is 

 ( ) ( )/ /E dS S dt k k= µ − λ + λ = µ  

We consider the particular case of this model where k = –1. In this case jumps always 

lead to a zero stock price. We assume that a zero stock price coincides with a default. 

Defaults are therefore generated by a Poisson process with intensity λ.14 

Consider a put option with strike price K and time to maturity τ. As before we define a 

moneyness variable κ by  

τκ= reSK 0  

where S0 is the today’s stock price. Merton showed that if the jumps are not priced15  

the option’s price is 

                                                 
14 This is similar to reduced form models such as those proposed by Duffie and Singleton (1999)  
15 The variable, λ, is the intensity under the risk-neutral measure. 
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 ( ) ( ) ( )0 2 1 1S e N d N d e−λτ −λτ κ − − − + κ −   (10) 

where 

 1 2 1
ln 0.5 ;E E

E

d d dλ − κ
= + σ τ = − σ τ

σ τ
 

Equating this option price to the Black-Scholes price defines the implied volatility v:  

 ( ) ( ) ( ) ( ) ( )* *
2 1 2 11e N d N d e N d N d−λτ −λτκ − − − + κ − = κ − − −  (11) 

where as before 

 ( )* * *
1 2 1

ln
0.5 ;d v d d v

v
− κ

= + τ = − τ
τ

 

If a volatility, σE, and a default intensity, λ, are chosen and equation (11) is solved to 

determine the Black-Scholes implied volatility for various values of κ, a volatility skew 

results. Similarly to the case of the Merton model discussed in Section I.C, the lower the 

value of κ, the higher is the implied volatility, v.16  

Merton’s (1976) model can also be used to determine the price of a zero-coupon bond 

maturing at time T, issued by the firm. If no default has occurred the bond is assumed to 

pay $1 at maturity and if a default has occurred at or before maturity the bondholder is 

assumed to recover R ≤ $1 at maturity.17 Conditional on the intensity of the Poisson 

process, the risk-neutral probability that no default has occurred before maturity, π, is 

exp[–λT ] and the probability that a default has occurred is 1 – π. The bond price is the 

present value of the risk-neutral expected value discounted back to the present using the 

risk free rate of interest. 

 [ ](1 ) rT yTR e e− −π + − π =  

where y is the yield on the zero-coupon bond. The credit spread on the debt is then 
                                                 
16 A version of the jump-diffusion model in which the diffusion part of the process obeys a constant 
elasticity of variance process was also tested. The results from the CEV version were not materially 
different from the results from the version described in the text and are not reported. 
17 This is equivalent to the assumption that the claim in the event of default is proportional to the default 
risk free value of the debt.  
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 [ ]ln (1 )y r R T− = − π + − π  

or 

 ( )ln 1T Te e R T−λ −λ − + −   (12) 

In the event that the recovery rate, R, is zero the credit spread equals the default intensity, 

λ, for all maturities. 

Just as equations (8), (9) and (5) allowed us to imply credit spreads from option 

volatilities under the Merton (1974) model, equations (11) and (12) allow us to do so 

under the Merton (1976) model. Option implied volatilities can be used to infer the 

default intensity and the stock volatility and these parameters can be used to imply a 

credit spread. As in Section III this can be compared with the contemporaneous CDS 

spread. In doing the analysis it is necessary to assume a time to debt maturity, T, and a 

recovery rate, R. The magnitude of the resulting implied credit spread is sensitive to these 

assumptions but the relative ranking of outcomes is not. 

These results allow us to provide an interesting test of the value of the structural model 

underlying Merton (1974). Our null hypothesis is that Merton (1976) ranks the credit 

quality of companies as well as Merton (1974). Table VI compares the performance of 

Merton’s (1976) model with Merton’s (1974) model.  The 1976 model has statistically 

significant explanatory power but in all cases the Merton (1974) model provides 

significantly better predictions of default probabilities and credit spreads at the 1% level. 

VI.    Conclusion 

The traditional approach to implementing Merton’s model involves estimating the 

instantaneous equity volatility and the debt outstanding by a particular future time. We 

have presented an alternative implementation where the inputs to the model are much 

simpler. All that is required to imply a credit spread is two implied volatilities. 

Our proposed implementation of Merton’s model outperforms a simple version of the 

traditional implementation of the model. It is reassuring that it also outperforms an 



 23

alternative way of deriving credit spreads from implied volatilities that is based on a 

model with less structure. 

Two predictions made by Merton’s are 

a) There should be a positive relationship with positive convexity between credit 

spreads and at-the-money volatilities. 

b) There should be a positive relationship between credit spreads and volatility skews 

when the at-the-money volatility is high. 

The first of the predictions is strongly supported by the data. The second is also supported 

by the data, but somewhat less strongly than the first.  
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Appendix.  Statistical Properties of Rank Order Correlation 

Kendall and Gibbons (1990) provides a great deal of information on the statistical 

properties of the Kendall’s and Spearman’s rank correlation measures. For n > 10, the 

probability distribution of Kendall’s rank order correlation, rk, conditional on no rank 

order correlation between the variables, is approximately normal with a mean of zero and 

a variance of [2(2n+5)]/[9n(n–1)]. The z-statistic for testing the null hypothesis that rk is 

zero is therefore  

( )
( )

3 1

2 2 5
kr n n

n

−

+
 

For n > 30 the probability distribution of Spearman’s rank order correlation, rs 

conditional on no rank order correlation is approximately normal with a mean of zero and 

a variance of 1/(n–1). The z-statistic for testing the null hypothesis that rs is zero is 

therefore .1−nrs  

When the rank order correlation is non-zero, Kendall and Gibbons show that the standard 

deviation of the estimate of rk depends on the true value of rk and other unknown 

quantities concerned with the arrangement of the ranks in the parent population. The 

same is true of rs. The estimated value of rk can be assumed to be drawn from a normal 

distribution with a mean of ρk and a variance of at most 2(1–ρk
2)/n where ρk is the true 

Kendall rank order correlation. The estimated value of rs can be assumed to be drawn 

from a normal distribution with a mean of ρs and a variance of at most 3(1–ρs
2)/n where 

ρs is the true Spearman’s rank order correlation. In practice ρk and ρs are set equal to the 

estimates, rk and rs, in these formulas.  

These results enable us to construct a conservative test of whether there is a significant 

difference between two rank order correlations. For example, suppose we observe a 

Spearman rank order correlation of ,1sr  from a sample of 1n  and a Spearman rank order 

correlation of 2,sr  from a sample of 2n . The z-statistic for testing whether they are 

significantly different is  
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2

2
2,1

2
1,

2,1,

/)1(3/)1(3 nrnr

rr

ss

ss

−+−

−
                                                            (A1)  

Suppose that rk, j and rs, j are the Kendall’s rank order correlation and Spearman’s rank 

order correlation for company j, that nj is the number of observations for company j, and 

that there are N companies. Under the null hypothesis that there is no correlation between 

the two variables each of the rk, j is normally distributed with mean zero and variance 

 ( ) ( )( )2 2 5 9 1j j j jV n n n= + −  

The mean value of the rk, j is then normally distributed with mean zero and variance 

2
1

1 N

j
j

V
N =

∑  

and the z-statistic for testing whether the mean is significantly different from zero is 

 ( ) ( )( ),
1 1

2 2 5 9 1
N N

k k j j j j
j j

z r n n n
= =

= + −∑ ∑  

An upper bound for the standard error of each of the rk,j is ( )2
,2 1 /k j jr n−  and the standard 

error of the mean value of the rk,j is 

 ( )2
,

1

1 2 1
N

k j j
j

r n
N =

−∑  

Analogously, the z-statistic for the mean value of the rs, j is 

 ,
1 1

1
1

N N

s s j
j j j

z r
n= =

=
−∑ ∑  

and an upper bound for the standard error of the mean value of the rs, j is 

 ( )2
,

1

1 3 1
N

s j j
j

r n
N =

−∑  

The expressions for the z-statistics and standard error for daily means in the day-day 

analysis are similar to those in the company-by-company analysis. In this case j counts 

days rather than companies and N is the number of days for which we are able to 

calculate rank order correlations.  
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Table I 

Regression of CDS spreads against Implied Credit Spreads. 
The credit spreads are implied from ImpVol implementation and Trad 
implementation of Merton’s (1974) model. The ImpVol implementation is the 
implementation we propose in equation (8) and (9). The Trad implementation is 
the traditional implementation of Merton’s model in equations (1) and (2). 
Standard errors are shown in parentheses. 

Implementation Constant Slope R2 n 

ImpVol 92.564 0.307 0.178 6220 

 (1.017) (0.008)   

Trad 95.811 0.157 0.069 6220 

 (1.137) (0.007)   
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Table II 

Regression of CDS Spreads against Implied Credit Spreads, Firm by Firm and Day by Day 
Mean and median results for regressions of observed CDS spread against implied credit spread. 
The credit spreads are implied from ImpVol implementation and Trad implementation of 
Merton’s (1974) model. The ImpVol implementation is the implementation we propose in 
equation (8) and (9). The Trad implementation is the traditional implementation of Merton’s 
model in equations (1) and (2)). In the upper panel the regressions are time series regressions 
done on a firm-by-firm basis (86 regressions). In the lower panel the regressions are cross-
sectional regressions done on a day-by-day basis (90 regressions). Only regressions with 30 or 
more observations are included. 
 

  Constant Slope R2 N 

Implementation  Time Series by Ticker 

Mean 100.55 0.33 0.26 63 
ImpVol 

Median 76.17 0.15 0.23 53 

Mean 96.31 0.22 0.29 63 
Trad 

Median 79.53 0.14 0.28 53 

  Cross-section by Day 

Mean 90.95 0.88 0.24 37 
ImpVol 

Median 92.68 0.36 0.18 35 

Mean 97.17 0.40 0.12 37 
Trad 

Median 99.37 0.21 0.06 35 
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Table III 

Rank Order Correlation Measures 
Kendall’s rank order correlation measure and Spearman’s rank order correlation measure between the implied credit 
spread from Merton’s (1974) model and the five-year credit default swap spread. The ImpVol implementation is the 
implementation of Merton’s model we propose in equation (8) and (9). The Trad implementation is the traditional 
implementation of Merton’s model in equations (1) and (2). The standard error of the rank order correlation is an 
upper bound. The z-statistic tests whether the rank order correlation is significantly greater than zero. The A – B rows 
use equation (A1) to test the difference between the A and B correlations. 

 Kendall’s  
Rank Correlation

Standard 
Error z-statistic Spearman’s 

Rank Correlation
Standard 

Error z-statistic 

All Data       

ImpVol Implementation  0.2836 0.0172 33.55 0.4230 0.0199 33.36 

Trad Implementation  0.2590 0.0173 30.63 0.3929 0.0202 30.99 

ImpVol – Trad 0.0247 0.0244 1.01 0.0301 0.0284 1.06 

Firm-by-firm (n = 86)       

ImpVol Implementation 0.3967 0.0188 38.01 0.5409 0.0202 35.51 

Trad Implementation  0.3101 0.0193 28.71 0.4386 0.0212 28.79 

ImpVol – Trad  0.0866 0.0270 3.21 0.1023 0.0293 3.49 

Day-by-day (n = 90)       

ImpVol Implementation 0.2506 0.0239 20.37 0.3630 0.0280 20.35 

Trad Implementation 0.2188 0.0241 17.78 0.3186 0.0285 17.87 

ImpVol – Trad 0.0318 0.0340 0.94 0.0443 0.0400 1.11 
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Table IV 

Rank order correlations for different values of the debt maturity, T 
Spearman and Kendall rank order correlations between the credit spreads implied from Merton’s model 
for different values of the debt maturity, T using the ImpVol implementation. The upper triangular 
portion of the matrix shows the Spearman correlation, the lower triangular portion shows the Kendall 
correlation. 

 

 T = 1 T = 2 T = 5 T = 10 

T = 1 1.000 0.978 0.954 0.988 

T = 2 0.878 1.000 0.946 0.974 

T = 5 0.826 0.800 1.000 0.947 

T = 10 0.908 0.861 0.809 1.000 
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Table V 

Regression of observed CDS spread against the at-the-money volatility and the volatility skew 

A regression of observed CDS spread (CREDSPR) against the at-the-money volatility (ATMVOL) and the volatility 
skew (SKEW).  

SKEWATMVOLCREDSPR ×+×+= cba  
SKEW is measured as the 25-delta volatility less the at-the-money volatility. Volatilities are measured as decimals and 
the CDS spreads are in basis points. Standard errors are shown in parentheses. 
To address co-linearity issues the regressions are done first with SKEW orthogonalized with respect to ATMVOL and 
then with ATMVOL orthogonalized with respect to SKEW. ** Denotes significance at the 1% level.  *Denotes 
significance at the 5% level. 

 

 

 Orthogonalized SKEW Orthogonalized ATMVOL   
Restriction a b c a b c R2 n 
None –27.61** 336.47** 57.83 75.63** 328.26** 657.50** 0.1889 6220 

 (3.68) (8.84) (36.86) (1.81) (10.27) (31.72)   
ATMVOL < 40% 7.62* 222.96** 14.13 72.31** 220.68** 313.74** 0.1318 3088 

 (3.72) (10.28) (33.75) (1.58) (11.63) (29.82)   
40% < ATMVOL –38.99** 371.91** 166.69* 86.42** 346.91** 794.51** 0.1413 3132 

 (7.62) (16.45) (66.95) (3.48) (19.28) (57.15)   
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Table VI 

Comparison of Merton’s (1974) model with a model based on Merton (1976) mixed jump diffusion process 
Data is pooled for all companies on all days The table shows the Kendall’s rank order correlation measure and Spearman’s 
rank order correlation measure between implied credit spread and the five-year credit default swap spread. 
The standard error of the rank order correlation is an upper bound. The z-statistic tests whether the rank order correlation is 
significantly greater than zero. The last row uses equation (A1) to test the difference between the Merton (1974) and the 
Merton (1976) correlations. 

 

 
Kendall’s  

Rank Correlation
Standard 

Error z-statistic 
Spearman’s  

Rank Correlation
Standard 

Error z-statistic 

Merton (1974) 0.2836 0.0172 33.546 0.4230 0.0199 33.362 

Merton (1976) 0.2095 0.0175 24.778 0.3177 0.0208 25.056 

Merton (1974) – Merton (1976) 0.0741 0.0246 3.019 0.1053 0.0288 3.657 
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Figure 1: Relationship between CDS spread and implied spread for ImpVol 
Implementation of Merton's Model. The three companies are Merrill Lynch (MER), 
Bowater (BOW) and Dow Chemicals (DOW).  The ImpVol implementation of Merton's 
model is the implementation we propose in equations (8) and (9). 
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Figure 2: Relationship between CDS spread and implied spread for Trad 
implementation of Merton’s model. The three firms are Merrill Lynch (MER), Bowater 
(BOW) and Dow Chemicals (DOW). The Trad implementation is the traditional 
implementation in equations (1) and (2) 
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Figure 3: Theoretical relationship between credit spread and at-the-money 
volatility. The relationship is implied by Merton’s model for alternative values of the 
volatility skew when option maturity is two months and debt maturity is 5 years. The 
volatility skew is the difference between the volatility of an option with a delta of 0.25 
and an option with a delta of 0.5. 
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Figure 4: Theoretical relationship between credit spread and volatility skew. 
Relationship is implied by Merton’s model for alternative at-the-money (ATM) 
volatilities when option maturity is two months and debt maturity is 5 years. The 
volatility skew is the difference between the volatility of an option with a delta of 0.25 
and an option with a delta of 0.5. 

 


