Inferences about the Amaranth Case and the Emerging Maturity of the Hedge Fund Industry

November 2006

Hilary Till,
Research Associate, EDHEC-Risk Institute
Principal, Premia Capital Management, LLC
EDHEC is one of the top five business schools in France. Its reputation is built on the high quality of its faculty and the privileged relationship with professionals that the school has cultivated since its establishment in 1906. EDHEC Business School has decided to draw on its extensive knowledge of the professional environment and has therefore focused its research on themes that satisfy the needs of professionals.

EDHEC pursues an active research policy in the field of finance. EDHEC-Risk Institute carries out numerous research programmes in the areas of asset allocation and risk management in both the traditional and alternative investment universes.
The Amaranth case is surprising in many ways. It is definitely a surprise that a well-respected multi-strategy hedge fund could lose about $6-billion in little over a week. It is perhaps an even greater surprise that such a loss would have little knock-on effects on the hedge fund industry and the wider capital markets.

On October 2nd, the EDHEC Risk and Asset Management Research Centre (EDHEC-Risk) released a report on the early lessons from the Amaranth debacle. This column will summarize this report. Given that there are no new material facts on this case as of the end of November 2006, this column will focus on providing new inferences on the riskiness of Amaranth’s trading strategies.

Because we have the benefit of observing the past two months of stability in the hedge fund industry, we can draw new conclusions about the emerging maturity of the industry.

Summary of EDHEC-Risk Report
In EDHEC-Risk (2006), we discussed how Amaranth, a respected, diversified multi-strategy hedge fund, could have lost 65% of its $9.2 billion in assets in a little over a week. To do so, we took the publicly reported information on the fund’s Natural Gas positions as well as its recent gains and losses to infer the sizing of the fund’s energy strategies. As of the end of August, the fund’s likely daily volatility due to energy trading was about 2%. The fund’s losses on 9/15/06 were likely massive compared to the fund’s recent daily volatility. One should not conclude that large standard-deviation moves such as those that occurred with Amaranth are as unlikely as say a catastrophic meteor strike. Instead, these very large moves in portfolio performance illustrate the impact of an extreme liquidation scenario once a highly leveraged fund becomes distressed. We discussed how Amaranth’s strategies were economically defensible in providing liquidity to physical Natural Gas producers and merchants. But we concluded that the magnitude of Amaranth’s energy position-taking had clearly been inappropriate relative to its capital base.

Our report does not cover the operational issues, which obviously arise from this case. We would recommend the Fauchier Partners’ essay on their due-diligence insights for specific lessons on this topic, as covered for example in Hosking (2006).

Reverse Engineering Amaranth’s Natural Gas Strategy
One would expect that the exact Natural Gas positions that were held by the Amaranth Multi-Strategy Funds will be confidential for an extended period of time.

Nonetheless, a substantial amount of information has thus far been made public regarding this debacle. Two of Amaranth’s Natural Gas spread strategies have been frequently mentioned in press reports. The size and timing of the fund’s gains and losses in energy trading have also been exhaustively detailed in the public domain. We therefore have enough information to perform a simple returns-based analysis on the fund’s energy strategy.

Returns-based analysis is a well-known technique in the hedge-fund industry since investors and risk managers frequently are not provided with position-level transparency. Instead, investors usually have to infer the exposures of a hedge fund from the fund’s return data.

One of the key insights in the Weisman and Abernathy (2000) approach to returns-based analysis is to use inflection points in a fund’s profits and losses (p/l) to infer a fund’s underlying exposures. It is mainly when there are inflection points in a fund’s p/l that the fund’s exposures reveal themselves, as confirmed by Joseph Eagleeye of Premia Capital Management.
We note that Amaranth apparently held short Summer / long Winter Natural Gas spreads as well as long March / short April Natural Gas spreads, including in deferred-delivery years, possibly through 2011.

We can create two spreads: (1) a Natural Gas spread combination in the March-April contracts for delivery in 2007, 2008, 2009, 2010, and 2011; and (2) a Natural Gas spread combination of Long Winter (December, January, February, and March) and Short Summer (June, July, August, and September) contracts for delivery in 2007 through 2011.

We can infer the size of Amaranth’s positions in Spreads (1) and (2) based on the publicly reported gains and losses for the fund's energy book.

It appears that the fund held positions that were highly correlated to holding about 86,000 March-April spreads and 11,000 Winter-Summer spreads throughout the Natural Gas curve.

We can double-check this inferred sizing against other publicly known facts on Amaranth. These positions provide approximately the same p/l as the publicly stated p/l for Amaranth from June though the end of August.

Note that we are not representing that the positions derived in this analysis are Amaranth’s actual positions. Instead, the strongest point that we can make is that these positions were highly correlated to those that produced Amaranth’s publicly reported losses.

Natural Gas participants will note that the magnitude of the inferred positions is greater than what would be expected from an examination of the futures open interest on the New York Mercantile Exchange (NYMEX.) Therefore, one would expect that a substantial fraction of the positions were accumulated through the over-the-counter swap market.

Further details on our returns-based analysis are covered in EDHEC-Risk (2006).

Liquidity Constraints in the Natural Gas Market

Figure 1 shows the open interest of NYMEX Natural Gas contracts throughout the curve as of 8/31/06. Figure 2 shows the daily trading volume for each Natural Gas contract, also on 8/31/06. Based on our inferred sizing of Amaranth’s positions and from inspecting the open interest and trading volumes of the exchange-traded futures contracts, we can immediately conclude that Amaranth’s position sizes were quite massive.

Say one wanted to exit the inferred positions of Amaranth without creating a price-pressure effect on the Natural Gas markets. Let’s say we would therefore restrict our daily trading to 5% of the open interest in the back-end of the NYMEX curve. Under this strategy, it would have taken about 410 business days to exit the Amaranth positions quietly. This clearly did not happen.

Risk Analysis of Amaranth’s Positions

An obvious question in retrospect is to ask: How did Amaranth’s risk managers become so wrong-footed in evaluating the risk of the firm’s Natural Gas strategy?

Risk metrics using recent historical data would not have been helpful in understanding the magnitude of the fund’s moves during an extreme liquidation-pressure event. See Figure 3.
As of the end of August, the daily volatility of Amaranth's inferred Natural Gas positions was about 2% based on the previous three months of trading experience.

The fund's loss on Friday, September 15th may then have been a 9-standard-deviation event based on the recent daily volatility of the fund. As will be discussed, the interpretation of this mathematical fact should not be that such events are as rare as a catastrophic meteor strike. Instead, this debacle provides an example of a severe liquidation cycle that can happen to a highly-leveraged fund, which has large illiquid positions.

Critical Liquidation Cycle

De Sa’Pinto (2006) summarized the dynamic behavior of Amaranth as it attempted to preserve capital as its losses mounted during the week of September 11th. A strongly adverse market movement, which in turn may have been triggered by the fund's initial attempts to reduce its exposure to the Natural Gas market, appears to have forced Amaranth to liquidate more and more of its positions during the middle of September. In the absence of natural financial counterparties to take on the other side of Amaranth’s massive positions, the value of these positions rapidly fell, triggering even more liquidations.

Such scenarios have been documented and formally modeled in the past for highly-leveraged funds. Once a fund crosses a threshold of losses, a cycle of investor redemptions occur (and/or the fund's prime brokers demand the reduction of leverage), and the fund's Net Asset Value thereby declines precipitously as the fund sells off holdings in a distressed fashion. Thus, a “critical liquidation cycle” begins, which in turn has been modeled as being short a barrier put option. This was done specifically by de Souza and Smirnov (2004). Figure 4 illustrates this cycle.

Nodal Liquidity

It appears that a sizeable fraction of Amaranth’s Natural Gas spread trading was in the relatively illiquid deferred part of the Natural Gas curve. Here, no matter how long one's dataset is, Value-at-Risk (VaR) will be of little help. There is an appearance of stability in the back-end, illiquid part of the curve, so VaR will show relatively low risk, even with very large positions. But if one then tried to transact in size, then this is another matter. Unfortunately, prices really should be parameterized, rather than be represented as a single point. The “fair-value” price for any investment is actually a function of the size of a transaction, how quickly the transaction needs to occur, and the risk preferences of the trader, as discussed Weinstein and Abdulali (2002).

The Weinstein and Abdulali framework is very appropriate for the commodity markets since these markets do not have natural two-sided flow. For experienced traders in the fixed income, equity, and currency markets, this point may not be obvious.

The commodity markets have “nodal liquidity.” If a commercial market participant needs to initiate or lift hedges, there will be flow, but such transactions do not occur on demand.

For experienced commodity traders, a key part of one's strategy development is a plan for how to exit a strategy. What flow or catalyst will allow the trader out of a position? In the case of Amaranth, there was no natural (financial) counterparty who could take on their positions in under a week (or specifically during a weekend when the fund initially tried to transfer positions to a third party). The natural counterparties to Amaranth's trades are the physical-market participants who had either locked in the value of forward production or storage, as further discussed in EDHEC-Risk (2006). The physical-market participants would likely have had physical assets against their derivatives positions, so they would therefore have had little economic need to unwind these trades at Amaranth's convenience.
Scenario Analyses
Veteran commodity traders do use measures like Value-at-Risk calculated from recent data to evaluate risk. But they also employ scenario analyses to evaluate worst-case outcomes. A natural scenario analysis for Amaranth would have been to examine what the range of Natural Gas spread relationships had been in the past. In that case, one would have found how massively risky the fund’s structural position-taking was in its magnitude.

Implications for Hedge Fund Industry Capacity
Why did a “multi-strategy” fund such as Amaranth effectively become one large bet on U.S. Natural Gas spreads? Was this because of capacity constraints in the hedge fund industry?

The decline in returns in established hedge fund strategies may have led Amaranth to pursue a very non-traditional strategy. But the decline in established strategy returns is not necessarily because of capacity constraints in the overall hedge fund industry.

A likely explanation for the diminishing returns in some hedge fund strategies is because of cyclical changes in the values of the risk premia (or “alternative betas”) to which hedge fund strategies are generally exposed. As Géhin and Vaissié (2006) show, "hedge fund returns are primarily drawn from exposures to a variety of risk factors." (Italics added.) And traditional betas and alternative betas are indeed quite scalable, as discussed by both Géhin and Vaissié (2006) and Jaeger and Wagner (2005).

The Hedge Fund Industry is Maturing
The assumed Amaranth spreads stabilized one day after the fund’s positions were transferred to JP Morgan and Citadel during the third week of September. See Figure 5. These two financial institutions took on Amaranth’s distressed positions at a substantial discount to the positions’ mark-to-market value. That JP Morgan and Citadel took on Amaranth’s energy book en-masse is a preview of how the markets will handle future hedge-fund liquidations.

Apparently, an investment bank is now packaging up the assets of various hedge-funds-in-distress to sell on to investors, according to Hedge Fund Alert (2006). This is a much preferable route compared to an individually distressed hedge fund trying to quickly sell its assets on the open market. Such a mechanism means that investors in hedge-funds-in-distress will receive much more of their money back, and with less of an adverse impact on whatever the asset class or investment is that the hedge fund is specializing in.

Further, a JP Morgan official was quoted in Reuters (2006), noting how there would likely be more “Amaranths,” and that provided there were not conflicts-of-interest, his institution was prepared to play the same role as it did during the Amaranth crisis.

In conclusion, the final lesson from the Amaranth debacle is that this may be an early sign of the hedge fund industry maturing. If the capital markets can develop smooth mechanisms for transferring whole portfolios of hedge-funds-in-distress, then one will not expect to see the continuation of large-scale distressed liquidations as with Amaranth (and Long Term Capital Management.)

In the long-only world, the transferring of portfolios from one active manager to another by pension funds and other institutional investors is already very well-developed to minimize price-pressure effects. The development of similar mechanisms is and will be a very positive development for the hedge fund industry.
Endnotes
The author would like to thank Professor Frédéric Ducoulombier of the EDHEC Business School for helpful comments on a previous version of this article.

The source of the data used in this article is from the Bloomberg.

References

Figures

Figure 1:

NYMEX Natural Gas Futures Contract Open Interest as of 8/31/06

Data Source: Bloomberg
Figure 2: NYMEX Natural Gas Futures Contract Trading Volume on 8/31/06

Data Source: Bloomberg

Figure 3: Daily Change in P/L from Inferred Natural Gas Positions (11/30/05 to 9/15/06)

Source: Graph draws from returns-based analysis of EDHEC-Risk (2006).

Figure 4: Critical Liquidation Cycle

Source: De Souza and Smirnov (2004).
Figure 5:

Note: This graph's Natural Gas Calendar Spreads are from 2007 through 2011.
Founded in 1906, EDHEC Business School offers management education at undergraduate, graduate, post-graduate and executive levels. Holding the AACSB, AMBA and EQUIS accreditations and regularly ranked among Europe’s leading institutions, EDHEC Business School delivers degree courses to over 6,000 students from the world over and trains 5,500 professionals yearly through executive courses and research events. The School’s ‘Research for Business’ policy focuses on issues that correspond to genuine industry and community expectations.

Established in 2001, EDHEC-Risk Institute has become the premier academic centre for industry-relevant financial research. In partnership with large financial institutions, its team of ninety permanent professors, engineers, and support staff, and forty-eight research associates and affiliate professors, implements six research programmes and sixteen research chairs and strategic research projects focusing on asset allocation and risk management. EDHEC-Risk Institute also has highly significant executive education activities for professionals. It has an original PhD in Finance programme which has an executive track for high level professionals. Complementing the core faculty, this unique PhD in Finance programme has highly prestigious affiliate faculty from universities such as Princeton, Wharton, Oxford, Chicago and CalTech.

In 2012, EDHEC-Risk Institute signed two strategic partnership agreements with the Operations Research and Financial Engineering department of Princeton University to set up a joint research programme in the area of risk and investment management, and with Yale School of Management to set up joint certified executive training courses in North America and Europe in the area of investment management.

For more information, please contact:
Carolyn Essid on +33 493 187 824
or by e-mail to: carolyn.essid@edhec-risk.com